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Torispherical shells are frequently employed as end closures for cylindrical shells. Such structures consist of a spher- 
ical cap joined to a toroidal segment, which is joined in turn to a cylindrical shell. In some cases, nozzles are attached 
to the torispherical shell. Solutions for spherical and cylindrical shells are known and approximate solutions for the 
toroidal shells are known. 

Analyses were d.erived to determine stresses in a tor~spherical shell which is attached to a cylindrical shell and which 
has a radial nozzle attached at its apex. The loadings considered were internal pressure, axial thrust applied to the noz- 
zle, and a bending moment applied to the nozzle. A particular solution was developed for the bending analysis which 
had no limitations such as those placed on the earlier approximate solutions. 

Comparisons between the developed analyses and experimental data from two models tested under internal pres- 
sure show excellent agreement. Since the analyses for external loads are very similar to that for internal pressure, it can 
be assumed that the other analyses are correct also. 

The buckling of torispherical shells under internal pressure was studied by comparisons between calculated results 
and results from an experimental model that buckled. This study indicated that the structure failed by plastic collapse 
since the maximum stress was very close to the yield stress of the model material. 

1. In t roduc t ion  

Torispherical shells are f requent ly  employed  as end closures for cylindrical shells, bo th  in missile design and in 

a wide variety o f  industrial- type pressure vessels. Such vessels consist of  a spherical cap jo ined  to a toroidal  segment,  

jo ined in turn to a cylindrical shell. In some cases, nozzles are at tached to the torispherical shell. 

Since the solutions for spherical and cylindrical  shells are known,  it is only necessary to derive a solut ion for the 

toroidal  segment.  There have been several approximate  solutions derived for the bending of  a toroidal  shell segment 

under ax isymmetr ic  l o a d i n g - n o t a b l y ,  the work  done  by Clark, Reissner,  and Novozhi lov.  There have been several 

numerical  me thods  used to get solutions for the t oms ,  but ,  in general, these me thods  have the same approxima-  

t ions as the analytical solutions and therefore  no be t te r  accuracy is gained [1 ]. 

One o f  the diff icult ies encountered  in the toroidal  shell is that  the membrane  solut ion is invalid at q~ = 0 ° or 

180 ° (see fig. 1). For tuna te ly ,  in most  pressure vessels and in the torispherical shell, the range o f  4) is be tween  90 ° 

and 40, the angle at the top o f  the toroidal  shell, where ¢ 0 is greater than 0 °. This allows the use o f  an analytical 

solut ion for the analysis o f  these pressure vessel configurat ions.  Another  dif f icul ty  encountered  is that the solut ion 

f rom the membrane  theory  is not  the part icular  solut ion to the bending equat ions.  The usual part icular  solut ion for 

the bending equa t ion  is based on the membrane  theory  but  some except ions  to this are the toroidal  and ellipsoidal 

shells. The interact ion be tween  the bending and membrane  effects increases the diff icul ty o f  the solut ion and this ' 

is the area where most  of  the l imiting approximat ions  or assumptions are made. One of  the purposes o f  this investi- 

gat ion is to develop a new me thod  for finding the part icular  solut ion in the case of  axisymmetr ic  loading and de- 
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Fig. 1. Geometry of the toroidal shell. 

velop a method to find the particular solution in the case of  nonsymmetrical loading. Particular at tention was di- 
rected to the case of a torispherical shell loaded by a concentrated moment or thrust at the apex. With this solu- 
tion, the torispherical shell with a radial nozzle attached at the apex can be analyzed for both an external moment 
applied to the nozzle and an axial thrust on the nozzle. This configuration is of much interest to industry. 

An experimental study has shown that torispherical shells can buckle from internal pressure due to high circum- 
ferential stresses [2]. Such studies were undertaken after vessel heads collapsed while undergoing their hydrostat ic  
proof  tests [3]. This is an intriguing phenomenon associated with toroidal shell element, and this investigation stud. 
ied the effect of external loads on the buckling of torispherical shells in the respect that stresses in one principal di- 
rection may be beyond the yield limit while the stresses in the other direction are lower than yield. 

In this investigation, an analytical study of a torispherical shell was undertaken which had concentrated exter- 
nal loads applied to the apex (concentrated moment,  axial load). The case of a toroidal shell segment under non- 
symmetrical loading had to be solved before the analysis of the torispherical shell. After the solution for a toroidal 
shell was derived, a discontinuity analysis was made between a spherical, a toroidal, and cylindrical shell elements 
to arrive at a solution for torispherical shells. 

1.1. Prev ious  con t r ibu t i ons  

The most significant contributions to the solutions of toroidal shells have been made by Clark [ 4 - 7 ] ,  Reissner 
[5 -6 ] ,  and Novozhilov [8]. In particular, an approximate solution for the axisymmetrical case has been derived 
by all three authors. Clark and Reissner derived their solution together, whereas Novozhilov's solution was devel- 
oped independently.  

The basic differential equations derived and solved by Clark were based on an axisymmetrically loaded shell. 
The loading considered was internal pressure. There were two basic equations in Clark's work; one equation was 
derived from two of  the equations by substituting the kinematic relations, moment curvature relations, and the 
force-displacement  relations into them combining them, fhe other equation was derived in a similar manner ex- 
cept the two equilibrium equations and the stress-strain relations were substituted into a compatibil i ty equation. 
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Clark used the horizontal and vertical directions as his principal axes and derived his equilibrium equations based 
on these axes. 

The solution method used by Clark was to add these two equations together to form a complex functional dif- 
ferential equation. Then using a homogeneous solution for this type differential equation developed by Langer [9], 
the homogeneous solution was easily written down based upon certain assumptions made in equation in order to 
get it into the basic form derived by Langer. The main assumptions made were that the ratios t/r o and t /R o were 
very small relative to unity, say 

t /r  o ~< 1/20 , 

which, in most cases, falls within thin-shell theory. Also all terms in the equation which were multiplied by ro/R o 

were considered small when compared with the terms multiplied by the ratio 

x/12(1 - v  2) r2o/Ro t , 

and therefore these terms were neglected. To get an approximate particular solution to his equation, Clark assumed 
that all terms in the equation multiplied (ro[Ro) 2 or V(ro[Ro)were small and could be" neglected. Because of these 
assumptions, this solution does not clearly show the interaction between the membrane and bending effects and 
therefore this solution must be used with caution. 

Novozhilov derived his solution by the use of a general partial differential equation for a general shell of revolu- 
tion and then reduced the equation for the special case of a toroidal segment. Novozhilov's method consists prin- 
cipally of replacing the deformation and change of curvature relations in the compatibility equations with mo- 
ment-curvature and force-displacement relations and rewritting the equations in terms of forces and moments. 
Then these equations supplement the equilibrium equations for a general solution. By the introduction of moment 
and force complex auxiliary functions, the compatibility and equilibrium equations are added together by simple 
operations to form three first-order complex partial differential equations in three unknown complex stress resul- 
tants. These equations are then combined and reduced to form two second-order complex differential equations. 
By such an analytical technique, a whole series of complex differential equations can be derived. This methods is 
of general importance and applies to any type of loading which can be expressed by a Fourier expansion. Such an 
expansion will lead to a set of differential for each Fourier harmonic. 

These general equations were reduced to the axisymmetric case, internal pressure, for a toroidal shell segment 
by Novozhilov. This equation was solved by using the method developed by Langer for the homogeneous solution 
[9]. Novozhilov derived a trigonometric series for the particular solution. This form of the solution is very difficult 
to use because of the many terms of the series that have to be used to get an accurate answer. In Novozhilov's 
book [8], graphs are drawn for the first six constants in the trigonometric series. 

The two solutions discussed above are the only analytical solutions found in the literature. There have been 
many attempts to numerically integrate the equations for toroidal shell segments and some of the methods seems 
to be promising, notably, the work of Kalnins [ 10] for the numerical integration of shell equations. Steele's [ 11 ] 
dissertation develops numerical methods for the higher harmonics for the toroidal shell segments and gives a dis- 
cussion of the assumptions made for this type of integrations. 

In the analysis of pressure vessels, the first two Fourier harmonic solutions (0, 1)are the most important be- 
cause the zero-order solutions are for the internal pressure and axial thrust loadings while the first-order solutions 
are for the concentrated moment loadings. By having analytical solutions for all shell elements, a discontinuity 
analysis of almost any shape vessel can be done with very little expenditure of time by use of a computer. 

1.2. Method  o f  at tack 
The torispherical shell with a nozzle at the apex and attached to a cylindrical shell was studied by a discontin- 

uity analysis. In essence, the discontinuity analysis was between four shell segments: a spherical, a toroidal, and 
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two cylindrical. Analytical solutions for the cylindrical and spherical shell elements were found in the literature 
[12 15]. These solutions have been extensively studied and compared against test results and have been found to 
be accurate [16 20]. The analytical solution for the toroidal shell was derived by using the general differential 
equations for a shell of revolution derived by Novozhilov and solving them for the first Fourier harmonic solution 
for a toroidal shell. 

When these equations were combined and rearranged, they became one second-order complex differential equa- 
tion. This single differential equation is exactly the same as Novozhilov's equation for the axisymmetric case ex- 
cept for one term. This particular term is 

a(1 - a  sin q~) 

(l +a  sin ~) sin 2 4~ 

which is small when compared with the other N¢ term in the equation. The other term is 

,/l 2(1 -- v b  . 

Since a is small, the first term is much smaller than the second term and therefore it may be assumed that this 
term can be neglected without too much error. Then the equation reduces to the same form as Novozhilov's equa- 
tion. The homogeneous solution for this equation was found by using the method develped by Langer [9]. The 
particular solution for this loading case and the axisymmetric case was derived by the variation of  parameters 
method [21,22].  The integration was done numerically on a digital computer. 

2. Membrane solutions 

In a membrane state of  stress, a shell is assumed to have no bending loads or transverse shear loads applied to it. 
The membrane state is justified only when the shell has a very small bending stiffness or when the changes of  cur- 
vature or twisting of  the middle surface are very small. The membrane forces at a point of a shell represent a plane 
stress system in a plane tangent to the middle surface of a shell. 

Consider a shell of  revolution bounded by one or two parallel circles. If the surface loading components are ar- 
bitrary functions of  the angles ~ and 0, they may always be represented in the form [23] 

POm cos mO + POre sin O, 

Po = ~ Pore sin toO+ ~ Pom cos toO, 
0 1 

(1) 

P , = ~ Pnm c°s mO + ~ f fnmSinm0'  
0 1 

where POm . . . . .  Pnm are functions of ~ only. The first of the sums in eq. (1) represents that part of the load 
which is symmetric with respect to the plane of  the meridian 0 = 0 and the second represents the antisymmetric 

terms. 
To find a solution to the membrane state, pick one set of  the terms, say: 

PC = Pom cos mO, Po = Pore sin mO, Pn = Prim cos mO , (2) 
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and find the particular case for these terms. Once this particular solution has been found, solutions for any distri- 
buted loading can be found by using the series [eq. (1)]. 

For this form of the surface loadings, the solution for the stress resultant may be written as follows: 

N o = Nom c o s  m e ,  N O = Nom c o s  mO, N ~  = NOO m sin toO, (3) 

whereNom, Nora, N¢o m are also functions of  ~ only. The positive directions of the stress resultants are shown in 
fig. 2. 

Three membrane cases were considered in this study: internal pressure, an axial force applied around the upper 
edge of a torus, and an edge moment applied around the upper edge of  a torus. The first two loading conditions are 
axisymmetrical about the axis of the shell while the last loading condition is nonsymmetrical about the axis. The 
axisymmetric loading cases are particular cases where the loading on the shell does not depend upon the circum- 
ferential angle, 0. This implies that the deformations of  the shell are independent of this angle; they are symmet- 
rical about the axis of  the shell. These cases are obtained by omitting all but the first term (m = 0) in the series 
[eq. (1)]. This results in the deformation, stress resultants, and loadings being functions of ~ only. For these loading 
conditions, the stress resultants of membrane theory can be calculated by the well-known equations [24]: 

C I 

R 2 sin 2 ~b 
+ R2 l ~ ~ o S i n 2  q~ (Pn cos q~ P~ sin ~b)R1R 2 sin q~d¢, (4) 

C1 1 f (Pn COS(P-Posindp)R1R2sindpdc) (5) N o = R2P n 
R 1 sin 2 q5 R 1 sin 2 

where C 1 is an unknown constant that can be obtained by satisfying the boundary conditions. 
In the nonaxisymmetrical case, the deformations and the stress resultants are not independent of  the angle 0 ; 

but are assumed to be dependent on the first Fourier harmonic (m = 1) as given in the series [eq. (1)]. In particu- 
lar, the interest is in the external moment applied to the shell at the upper edge, ¢o, which is symmetric with re- 
spect to the plane of  the meridian 0 = 0 and varies as cos 0 in the circumferential direction [14]. Also in this par- 

Nq, 0 - ~  N4, 

Fig. 2. The positive directions of the membrane forces acting on the shell element. 
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ticular case the surface loadings are assumed to be zero. This results in the deformations and stress resultants being 
functions of 0 and the first harmonic of 0. The stress resultants of membrane theory for this case can be calculated 
by the equations [25]: 

1 

N¢-R22 sin 3 0 

o ; 
- - ( C 2  + C 1 f R1 s i n 0 d 0 +  ~R1 sin 0d0)  cos 0 , 

~o ¢o 

(6) 

1 
NO = [R2Pn R1R 2 sin 3 0 (C2 + C1 ~ R1 sin 0 dO + f q~R 1 sin 0 dO)] cos 0 ,  

~o 0o 

(7) 

_ cot O sin 2 O q~ 
NO° (R 2 sin 4) 2 [C2 C1 (R2 c o s ~  ; R 1 sin 0 d0) 

°o 

R 2 sin 2 0 R~ sin 3 0 0 

--fo c o s ~  + ( P c ° s 0 - P 4 ~ s i n 0 )  cos0 + dORls in0d0 ] s in0 ,  (8) 

where 

q b = ( P c o s 0  P c s i n 0 ) R 2 s i n 0  fo ( P n s i n c ~ + P ¢ c ° s O - P ° ) s i n O R 1 R 2 d O  ' 

and where C 1 and C 2 are unknown constants that can be solved by satisfying the boundary conditions. 

2.1. Axial thrust load 
For the iorus, the two radii in shell theory are given by 

R 1 =ro, R 2 =R o (1 +¢x sin 0)/sin 4), (9) 

where 

o~ = ro/ R ° . 

Fig. 1 shows a meridional section of a toroidal shell and fig. 3 shows the distributed axial force, NX, acting in the 
positive direction on the upper edge of the shell. The surface loadings are zero in this case and upon substitution 
of eq. (9) into eq. (4), eq. (4) reduces to 

C 1 
NO = R o (1 +u sin 4) sin 0 (I0) 

At the upper edge of the shell, 0 = 0 O, the meridional stress resultant is given by 

N o =Nx/ s in  O 0 . (11) 
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N x 

N 

F 
Nx= 2Ro(t+a SIN ~O)~ 

Fig. 3. The positive direction for the distributed axial force. 

Solving eq. (10) for C 1 at ~ = ¢0 by using eq. (1 1)and substituting C 1 back into eq. (10)yields 

(1 +a  sin (90)N X 

N~ - (1 +a  sin ~) sin 4~ 

for the distributed axial load, N X. 
The circumferential stress resultant for the axial thrust case can be found by substituting the value of C 1 into 

eq. (5), which becomes 

(1 +a  sin (90)m x 

No = - a sin 2 ~b 

2.2. Internal pressure 
The surface loading components for internal pressure loading are given by 

(12) 

(13) 

Pn = P'  PO = 0, Po = 0 .  (14) 

Eqs. (4)and (5)by  using eqs. (14)and (9)can be written as 

C 1 Pr o 
NO = R o ( l + a s i n q ~ ) s i n ~  + ( l + a s i n ~ ) s i n q ~  f c o s q ~ ( l + a s i n ~ ) d ¢ ,  (15) 

~o 

PR (l +asin~b) C 1 PR 
No o o f . - - cos ~b (1 +a  sin ~b) d ¢ (16) 

sin 4~ ro sin 2 q~ sin 2 
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If at the upper edge of the shell, 4 = q~o, the meridional stress resultant is given by N~, then eq. (15) becomes 

( l + ~ s i n 4 0 )  sin4 ° * 
NO-  ( l+oes in4)  s~n-n~ NO+ 

P r  
o 

(1 + o~ sin 4) sin 4 
lsin 4+½c~ sin 2 4 -  sin 4 o ½cr sin 2 40 ] (17) 

The internal pressure causes an axial force to act at the upper edge of  the shell, 4 = 4 o, which gives the stress re- 
sultant A~. The distributed axial force acting at this edge is given by 

(R2s in4o)2 r rP  R o ( l + c ~ s i n 4 o ) P  

NX= 2rrR 2s in4  0 - 2 (18) 

* leads Substituting this expression imo eq. (1 ") at 4 = 4 o and in turn substituting this relation into eq. (17) for N o 
to the equation for the meridional stress resultant under internal pressure which is 

_ roP [-1 +u sin 4 ]  
G--7-L 7_1 (19) 

Then from eq. ( 1 6) the circumferential stress resultant is 

N o =½roP [1 - 1/(c~ sin 4) 2 ] . (2o) 

2.3. Edge moment loading 
In this loading case, the external moment applied at the upper edge, 4 : 40, varies as cos 0 about the meridional 

platte 0 = 0 and the surface loads are equal to zero. Eqs. (6), (7), and (8) then reduce to 

1 [Cv + C 1 ~ r o sin 4 d4] cos 0 , (21) 
A• = "R2o (1 + o~ sill 4) 2 sin 4 " 0o 

O 
No = 1 j" (~) 

roRo (1 +c~sin4) sin24 [ C 2 + C  l rosin 4d4]  c o s 0 ,  _ ,  
O o 

= c_o ! 4 
NO° R 2 (1 +o~sin 4) 2 

o 

2 + CI cot 4 r ° sin 4 d4 sin 0 . (23) 
0o 

The two constants C 1 and C 2 in the expressions must be determined from the given values of the forces N 0 and 
N ~  at the upper edge of  the shell. 

Since the ultimate objective of this study is to obtain a solution for the torispherical shell, the membrane forces 
acting on the upper edge of the torus will be the membrane forces from the spherical portion of the shell. For a 
concentrated moment acting at the apex of the spherical shell, the membrane forces acting at the lower edge of 
the spherical shell which are the same membrane forces acting at the upper edge of  the torus, are given by [14] 

M cos 4 0 sin 0 
N ; -  M COSO N ~ -  (24) 

rrR2 sin3 ¢o' 7rR2 sin2 4o 
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The radius of  the sphere is denoted by R S. The relationship between R s and the geometry of the torus is given by 
the expression 

R s sin 4}0 = R o  (1 + a  sin 4}0) • (25) 

Rewritting eq. (24) using the above relation gives 

M cos 4}o sin 0 

M c o s  0 N S  - nR 2 (1 + a  sin 4}0 )2 sin 4}0" (26) NS = rrR 2 (1 + a  sin 4}0 )2 sin 4}0' 

Evaluating the eqs. (21) and (23) at ~b = 4}0 requires that the unknown constant C 1 be set equal to zero since the 
evaluated integrals are zero and C 1 would be indefinite. By setting the right-hand sides of the evaluated equations 
equal to the right-hand side of eq. (26), C 2 was found and its value is 

C 2 = MI~. (27) 

Then eqs. (21), (22), and (23)can be rewritten as: 

M cos 0 M cos 0 
, N O = , N~o - 

N~ - 7rR 2 (1 + a  sin 4})2 sin 4} nroR ° (1 + a  sin 4}) sin 2 4} 

M cos 4} sin 0 

7rR2 ° (1 +oe sin 4})2 sin 4} 
(28) 

2.4. Secondary membrane resultants 
When discussing the membrane stress resultants in the first part of this section, the assumption was made that 

all bending and twisting moments  were zero. Now a real shell of thickness, t, has a finite bending rigidity: 

Et  3 
K - . (29) 

12 (1 v 2) 

This indicates that all shells even though loaded only in a membrane state will have some changes of  curvature or 
some twisting of their middle surfaces. Examination of the compatibility equations shows the relationship be- 
tween the in-plane stress resultants and the bending or twisting stress resultants. The compatibility conditions as 
derived by Novozhilov [26] are: 

a ( OM¢~o)  0R2 sin 4} 
a-'~ [R2sin4}(Mo -PMc) ~ - (1 +v) R 1 - - ~ -  l a4} (Me~-vMc~) 

12R1 [R 2 sin 4}(N O vN4) ] 
OR 2 sin 4} 

04} 
O (R 1N¢,o )t 

( N ~ - , , N 0 ) - 2 ( I + ~ )  ~ ] , 

a { O R  2 sin 4} ~}M~o 'l 
R1To(M4~-vMo) - ( I  +u) 2 ~ ~  M4) o + R 2 s i n ~ - ~ - ]  

(30) 

-t t o f 12R2 R l - ~ - ( N c ) - U N o ) - 2 ( l + u  ) (R2sin4}N¢,0) 2 ( I + V ) R  ~ ~4} N ~  , (31) 
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M 0 vMc) M 0 vM 0 
+ 

R 1 R 2 - 12Rf2sin4) ~ - k -  t 2sin4)~-[No ~N¢,I (l+,,') R 1 T ] ]  

3 l R 1 (No UNo) (1 +v) + Nc~ ° 
30 R 2 sin 4, ~ ] 34) (32) 

For the axisymmetric case, the equations can be rewritten in the following form: 

0 [R 2 sin 4)(M o OR 2 sin 4) 
ad ~,M,)] a4) (M, ~,M o) 

_ t 2 ~ O 3R 2 sin 4) 
12R1 1 ~ jR2 sin 4)(N o u?v~)] 34) (G ~Xo) f ' (33) 

3I 0 vM~ M¢) vM o 
+ ~ 0 .  (34) 

R l R 2 

The last equation is based upon the assumption that t2/12R~ R 2 or t2/12R 1R 2 is much smaller than t2/12R 1 and 
therefore the right-hand side of eq. (32) is neglected. For the toroidal shell, tire following approximate relations 
for the secondary stress resultants for axisymmetric loadings are derived from eqs. (33) and (34): 

t 2 t 2 sin 4) 
M*=V.~(N* ~'X0)' Mo- 12Ro l+~si,--~4)(N* V~o) (3S) 

These equations are based on tile assumptions that terms multiplied by u/R 1 , v/R 2, vR 1/R2 can be neglected. 
For the nonaxisymnletric case, particularly the externally applied moment loading, eqs. (30), (31), and (32)can 

be written in the following form: 

3 3M¢, o 3R 2 sin 4) 
3~- [R2 sm 4) (M o uM4))] (l +u)R 1 30 34) (Mc~ uM°) 

_ t 2 ~ 3 3R 2 sin 4) 
12R1 t o~[R2sin4)(X° vN4))] 34) 

3N °° l (N4) uNo) - 2(1 +u)R 1 - - ~ -  , (36) 

R l ~(Me) uMo) ( l + u )  2R l c o s 4 ) M e v 0 + R z s i n 4 ) ~ -  ] 

12R 2 R1 ~ ( N e ~ - V N o ) - 2 ( l + ~ ' )  R lCOSON¢,o+R2s in4)~-  ] 2( l+u)R2cos4)N4~ o , (37) 
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M e - uM o + Me - vM o 

R 1 R 2 
o .  (38) 

For the toroidal shell subjected to nonaxisymmetric loadings, the following approximate relations for the second- 
ary membrane resultants are derived from eqs. (36) and (38): 

t 2 t 2 sin__~ _ t 2 
Me=l~-oro(Ue-UXo) , M o -  IZRo l + a s i n o ( N e - U N o ) ,  Meo 1 2 r o N ~ .  (39) 

The equations were derived by using only eqs. (36) and (38). Since there are differences between eqs. (36) and (37), 
the derivation using eq. (37)would lead to different but smaller values for the moments. Therefore, since eqs. (39) 
give larger values for the moments and agrees very well with the forms for the moments used in ref. [14], these re- 
lations for the moments will be used. Note also that the multiplier 2 was dropped in front of the last term in eq. 
(36) for the derivation of eqs. (39) because of the assumptions Meo = Moo and Neo = Noe . 

3. Bending solution 

Novozhilov reduced the analyses of shells of revolution to two second-order complex differential equations 
[27]: 

(Um)+m2Fl  - i C ( 1 w - -  l ~ - l ~ ] N m = F m  (~b), (40) G m 
L \t<l /'C2/sinZ~J 

_ i C G m ( ~ m ) + ~ m + (  1 1 ] 1_~_ ~m=R2Pnm ' 
\R1 R2] sin 2 ~b 

(41) 

where 

F m ( O ) - R l R 2 s i n (  p [(Pnm c°s(p Pc)mSin~)R~sin2dp] +mPemR1R~sin20 . 

1 d [R~ sin q5 d )3 
G ( . . . ) = R 1 R 2 s i n ~ b  dq5 L R 1 (d ;"  

(42) 

~ dN m 
U m =NemR 2 sin 2 gS-iC R2 sin q5 cos q~ d~- 

1 

m 2 (43) 
- - ( . . . ) ,  
R 2 sin 2 ~b 

(44) 

dUn dNe°m iC~2 cot~ d2/~ cos(p-Pemsindp)RlR2sinq) (45) 
d~ ~-Rlsin~ dO d02=(Pnm ' 

C - t (46) 
x/12(1 -u2)  ' 
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i Mo,n vMom (47) 
N ~m = N com C 1 u 2 ' 

i M~m UMom 
Nora = N°m C 1 v 2 (48) 

i M¢oom ( 4 9 )  
N ~  m = N ~  'n +C l u - '  

, ~ -N"~m cos m0 , N=o A~O", cos rn0 , N¢o = N"~om sin m O , (51) 

iV) = NOra COS DI 0 , N o = N O m c o s m O  , Neo = N~m sin m 0 , ( 5 2 )  

M O=MOm cosmO , M o =Morn cos m 0 ,  M #  = Mcaom sin m 0 . (53) 

3.1. Nonaxisymmetrical bending case {m = 1) 
The solution for the toroidal shell for the first Fourier harmonic is developed in the following manner. Eqs. (40) 

and (41 ) are written for the first harmonic and eq. (40) is subtracted from eq. (41 ) yielding: 

sin 2 ~b 
(54) 

where 

= gl  + iCJ~l " (55) 

Upon integrating eq. (54), the expression for W is 

1 
- R  2s in~(C1 + C 2 f  R1 s i n C d ¢ + f ~ R  1 s in~d¢)  , (56) 

where 

4~ 
* - ( P , 1  cos~ P ~ l  sin ¢) R~ sit, ¢ f ( P l s i n ~ + P ~ l C ° S ~ - P 0 1 ) R 1 R 2 s i n ~ b d ~  , 

$o / 

and C 1 and C 2 are real arbitrary constants. The lower limit of integration ¢~o is identified with the angle correspond- 
ing to the upper edge of the toroidal shell. 
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The relation between U1 and 21 can be established after substituting the expression for W into eq. (55). In- 
troducing this new value of U l into eq. (41), the following complex second-order differential equation is acquired: 

( 1  1~ 1 j~ + i ~ 1  i 
G1 (N1) + R 1 - R 2 ]  sin2~-~ 1 C = C F1 (4))' (57) 

where 

1)  1 0 0 

1 -R22 R 2 sin 3 Oo Oo 
F I ( 4 ) ) = R 2 P n l -  R-1 4) [C1 +C2 f Rlsin4) d0+ f {I}R1 sin4) d4)] " (58) 

By comparing eq. (58)with eqs. (6) and (7), it is readily seen that eq. (58) can be expressed by the relation: 

* (59) F 1 (4)) = N;1 + NO1 , 

where Ngl an N~I are the membrane stress resultants. 
The analysis of shellg of revolution of arbitrary shape for the first Fourier harmonic has been reduced to the in- 

tegration of a complex secondorder linear differential equation given by eq. (57). This differential equation was 
first derived by Novozhilov [27]. 

Expanding eq. (57) and using eq. (9), eq. (57) can be written as: 

d2N1 (_asin4) 1) d~T1 a ( 1 - a s i n 4 ) )  ~ l + i 2 d  2 sin4) ~ l= i2d  2 - -  + cot 0 
d4)2 ~ i +c~n-O d-O- + (1 + a sin 4))2 sin 4) I +a  sin4) 

sin 0 . 
I +0~ sin 4) (N;1 +N0*l)' 

(60) 

where 

2d 2 = 4 1 2 ( 1  - v  2) r2o/Ro t = r2/RoC. 

Multiplying each term of the equation by (1 + a sin 4))/sin 4) and simplifying leads to the differential equation 

1 d [( l + a sin 4)) 2 d/Vl-I a ( 1 - a s i n 4 ) )  4 ) ~ l + i 2 d 2 ~ l = i 2 d 2 ( N ~ l + N ~ l  ) - - -  + . . . . .  * 

l+as in4)  d4) sin 4) d4) j ( l + a sin 4)) sin 2 

Upon inspection of eq. (61), it is readily seen that the term 

o~(1 ~ sin 4)) J~l 
(1 +~ sin 4)) sin 2 4) 

is obviously small since a is small and can be neglected when compared with the term i2d2/T 1 since 

ar  a(1 --a sin 4)) ~/i2(1-v2) ~ °  > >  
t (1 +a sin 4)) sin2 4) 

Therefore, it is assumed that this term can be neglected and eq. (61)becomes: 

(61) 
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dN 1 -] 1 d (1 +o~sin ~)2 
1 +~s in0  dO sin0 d o j + i 2 d 2 N l = i 2 d 2 ( N g l + N o l ) "  (62) 

The homogeneous solution for this equation was found by using a method developed by Langer [9]. The particu- 
lar solution to this equation is considered later. The homogeneous solution is: 

d]~l _ sin 0 g ,  

dO (1 +(~ sin 0) 2 (63) 

where 

Z=  1"? [ G i g  I (~/~G) + C2,Z2 {Nf~i-e)] , 

3 1 
r l -  (1 +c~sin 0) 4 {e]7 

(sin 0) ~ ~dJ 

*~1 (X/~-c) = ( X / ~ e ) ~  H, (1) ( V ~ e ) ,  
3 

Z2 (x/~e) = (x/~e)+ H (2) (x/~e) , 
2 

e = 3dO 7 1 - 02 + 44 3 
"'" 10 

O/ 0{1 ._ ~_6 02 + 11 4 ~ 0  ...) 

9 °~202 (1 35 02 49 04 )] 
+ 5 7  - l_ _s + 1 4 4 d  . . . .  

Eqs. (47), (48), and (49)were solved for the stress resultants using the solution to differential equation (62)and 
they are as follows: 

2d 2 (l+c~sin) 2 12(1 u2 ) ( l+ctsin0)2sin 0 ~-- cos0 ,  

t I ,  l tJro,2 cotO (d )l 
No 2d 21 d0d ( l+cts in0)  I ra(Z)  + 12(1_v2) (l+c~sin0) 2 Re C O S  0 

o~ 1 hn (Z') + (t/r°)2 cot 0 Re 
N~° = 2d 2 (1 +asin) 2 12(1 - u  2) (1 +oe sin 0) 2 dO- 

sin 0 , (64i 

1 + ¢x sin 0 (1 + ~ sin 0) 2 



R. C Gwaltney, Localised loads applied to torispherical shells 67 

C(t/ro)2 1 im ( d Z ' ) l  
12(1+v)  (1 + a  sin q~)2 sin 4) - ~  cos0 

C a cos 4} Re ( Z )  + v 1 + 0~ sin ~} 1111°= - ~  (l+o~sin{b) 2 

I C(t/ro)2 1 Im ~ -  cos 0 , 
12(1 +v) (1 +o~ sin q~)2 sin {b 

c ( 1 - . )  Re 
M~°= ( l + a s i n ~ ) 2 L Z d  2 

,tJro)2 cot0,m(d )l l 
12(1 - v  2) 7 ~  

sin 0 . 

_ C sin~ I m ( Z ' ) c o s 0  Qo_  C 1 _ _  R e ( ~ - ~ ) s i n 0  
Q{~ r ° (1 +asinq~) 2 ' 2d 2 Ro(1  +{~sin4}) 2 " 

In order to do a discontinuity analysis of a toroidal shell attached to another shell, the slope or angle of rota- 
tion of the tangent to the meridian and the horizontal deflection of the shell are needed. The deflection was cal- 
culated by the well-known relation: 

R o (1 +c~ sin qS) 
8= E t  (U o vX4~ ) (65) 

and the slope in the meridional direction was derived by solving the following two equations simultaneously 

E t 3 E t 3 
M4} - v2) (k4) + vko) , M o - (k o + vko) , (66) 

1 2 ( 1 -  12(1 v 2) 

where 

1 dX~, 1 cos q5 
k ~ -  ro de) ' kO = Ro (l +a sin d)) XO + Ro (l +~ sin o) X4~ " (67) 

The relation for the slope in the meridional direction is: 

1 1 Re (•). (68) X4~- E t  a ( l + a s i n 4 } )  

The positive directions of  the stress resultants and surface loads are shown in fig. 4, while in fig. 5a cross section 
of the shell along a q~ line is shown. 

3.2. Axisymmetrical  bending case (m = O) 
This is the particularly important case when m = 0 in eqs. (40)through (53); therefore, the surface toadings are 
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~a o eo 

r~eo Mee° 

q~ 

NO N N o 

l:ig. 4. Positive directions of the stress resultants and surface loads. 

symmetrical with respect to the axis of the shell and the surface loading component Po is absent. In order fl)r the 
deformations of the shell to be axisymmetric, the surface Ioadings and the edge loadings must be axisymmetric. 

If the edge loadings and the surface loadings are symmetrical, then the loadings only produce the stress resul- 
tants NC,, N o, M,.CZ, M o, Q~. Therefore, the state of stress in the shell can be completely characterized by the com- 
plex functions NO and N o (as functions of ~ only). 

Under these conditions, eqs. (40) through (53) take the form 

where 

( ; (~)  = ,% (~), (69) 

i C G ( I ~ ) + ~ + (  I 1 ) l _ _ ~ = R 2 P n ,  

F m ( 4 ) - R l R 2 s i n ~ b  [ ( P  cos~ Pc, sinq~] R~sin 20] , 

1 d {-R~sin~5 d( )1 

c()-R,R2sm  ' 

(70) 

(71) 

(72) 

b: = e~C, R 2 sin 2 qb- iCR1 sin ~b cos q5 "~¢~, 
i 31o uMea 

Nc) = NC, ~ 1 v 2 (73, 74 ) 

i MC, - uM o 
No = No C 1 u2 dO - ( P n  cos ~ PC, sin qS)R1R 2 sin <). (75 77) 

Upon inspection of eqs. (69) and (77), it is seen that these two equations are the same. Integrating eq. (77) with 
respect to ~ yields 
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/ 
Fig. 5. The shell showing a 

N~ 
X~ 

Q~ ::i:i~ilili??: 

3 

N 

cross section along a qS-coordinate line. 

=C1 + f (Pnc°Sq~-PosinO) R1R 2sinOdO, (78) 

oo 
where C 1 is a real constant and the lower limit 0o is identified with the angle corresponding to the upper edge of 
the toroidal shell. 

Substituting U into eq. (70), the following complex second-order differential equation is acquired: 

iCG(N) + N = F(0) ,  (79) 

where 

F(O) =PnR2- ( 1  1 ~  1 0 [Cl+of  ~ (Pnc°S0 Posin0) R1R 2sinOdO] . 
R 2 ] sin 2 0 

g 

By comparing eq. (79)with eqs. (4) and (5), it is readily seen that eq. (80) can be expressed by the relation 

(80) 

F(0) = N~ + No,  (81 ) 

* and N~ are the membrane stress resultants. where N~, 
Therefore the axisymmetric analysis of a shell of revolution of arbitrary shape has been reduced to the integra- 

tion of a complex second-order linear differential equation given by eq. (79). 
Eq. (79)was expanded and using eqs. (9)was rewritten as 

d2N +Ic~ sin 0 -  1-] dN sin0 ?~=i2d 2 sin0 (N;+NO). (82) 
d0 [T~-a s~n q~jc°t 0 ~ +i2d2 1 +~s in0  1 +c~ sin 0 

Multiplying each term of the equation by (1 +~ sin 0) / sin 0 and simplifying led to the relation 

1 d [(l+o~sin0) 2 d2~] 
l+c~sin0 d0 sin0 ~ +i2d2N=i2d2(N~ .+Nv) " * * (s3) 

The homogeneous solution for a similar differential equation [eq. (62)] was found earlier and by analogy the so- 
lution for this equation can be written as 
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dN sin 0 

d0 (1 + o~ sin 0) 2 
Z ,  (84} 

where the function "Z is the same as given by eq. (63). Having found a solution for the differential equation [eq. 
(82)], eqs. (74) and (76) were solved for the stress resultants and they are as follows: 

1 lm (Z')] N0_ o~cos0 1 Im(Z') No_ 1 d 1+~ 0 ' 
(1 +a  sin 0) 2 2d 2 ' 2d 2 d0 sin 

C I ~  ( 1 R e ( Z ) )  + v a c o s O  R e ( ~ ) l  
M e -  2d 2 1 +a sin 0 (1 +a  sin 0) 2 ' 

C a cos 0 Re (Z)  + v 1 + o~ sin 0 ro ( 1 + a sin 0) 2 M ° -  2d 2 (1 +o~sinO) 2 ' " 
(85) 

The horizontal deflection of the shell is given by eq. (65)and the slope was found by simultaneously solving 
eqs. (66), where 

1 dXe cos 0 
k e -  dO ' k° =R o(l+oesinO) Xe"  

r o 

(86) 

The relation for the slope is: 

1 1 R e ( Z )  (87)  
XO- Et a( l  + a s i n 0 )  

3.3. The particular solution 
Since both eq. (62) and (83) have the same form, the same method of attack was used for both cases. To use Lan- 
ger's method [9] the equations (62) and (83) are differential with respect to 0 and multiplied by (1 + o~ sin 0) 2 in 
order to reduce them to the form 

1 dr'l+ s'n0'2d ll o, 
(1 +as in0 )2  l + a s i n 0  d0[_ sin0 ~ -  +i2d2(1  +as in0 )2  ~ =i2d2(1 +asinO2 d7 " 

Langer developed the homogeneous solution for equations of this form and the method of variation of parameters 
was used to derive the particular solution. First, the function 

f'{x) = i2d 2 (1 +a sin 0) 2 ~ ( N ~ + N o )  (88) 

must be determined. This function will depend upon the loading for each particular case since it depends upon the 
corresponding membrane solution. The f ix )  is calculated for each case as follows: 
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Pressure." 

f~(x) = i2d 2 
r Z cos ~ ( 2 - a  sin ~) (1 +a  sin ~)2 

2 a2 sin 3 

Axial force." 

ff~(x) = i2 d 2 

Concentrated moment." 

A(1 +c~ sin ¢o) cos q5 2 + 3 a  sin q~ 

sin 2 q~ sin q~ 

f ( x )  = i2d 2 2M cos ~b 1 + 2 a sin q~ 
ZrRoro (1 + 2 sin ~) (sin ¢)3 " 

(89) 

The variation of parameter methods [21, 22] permits the determination of a particular integral of  an equation 
of the form: 

d n -  ly 
dny + P1 (x) + + (x) dy + Pn ( x ) y  = f ( x )  (90) 
dy n dxn_ 1 " " " Pn-1 ~ ' 

where the general solution of the related homogeneous equation 

d n - l y  dy 
dyn' + P1 (x) + + (x) + Pn ( x ) y  = 0 (91 ) 
dxn dxn_ 1 " '"  Pn-1 - ~  

is known. 
Let the general solution of eq. (91) be of the form: 

y = ClY 1 + C2Y 2 + . . .  + CnY n , (92) 

in which the C n 's  are arbitrary constants, and assume that a set of n functions V l (x), V 2 (x) . . . . .  V n (x) can be 
chosen so that 

y =  V lY l  ~- V2Y 2 + . . . +  VnY n , (93) 

is a particular solution of  eq. (90). By a standard technique, the functions d/dx (V1), d/dx (V2) . . . . .  d/dx (Vn)are 
determined from n linear algebraic equations. These equations can be written in matrix form, namely: 
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Y l  Y2  " " " Yn  

dYl @2 dy,, 
dx dx " '"  &v 

-d V 1 

d V 2 

dT-x 

I 

. . . . . . . . . . . . . . . . . . .  i! 
i ,  - 

dn-ly  1 dn-ly 2 d n - l y  n I:'dV 1 

• ~ ~ ' ~ -JL~- 

F O 

= 0 

v x,j 

o r  

[d[q [q 
Then matrix operations can be used to solve for d Vn/dx: 

[~.]: [~-'] [~;] 
The matrix V can be calculated from the following equations: 

[q:; [~'] [d d~ 
X 

O 

To use the above method, the solution to eqs. (62) and (83) has the form 

Z = C1Z 1 + C2Z 2 , 

where 

g l  = Z R I  + iZ l l  ' Z2  = Z R 2  + iZ l2  " 

Then the solution was substituted into eq. (94)which gave 

where 

-d£, A Z1 22 [%]= 
L dO dO ] 

Earl: 
d V1] 

LdC~J 

E~] = E,;,] 

(94) 

(95) 

(96) 

(97) 

i983 

(99) 

(100 102) 
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To solve the above matrix equation (99) it was transformed into a real equation from a complex one. This was 

where 

z=M+iN, F=StiT, ?=Y+iZ. 

This led to two real equations: 

MY-NZ=S, NYtMZ=T, 

which when written in matrix form became 

1: -;I[=[. 

Using the above transformation and eq. (97) and (98), eq. (99) can be rewritten as: 

done by the following method [28]. A complex matrix equation was represented by 

E=F, 

where 

ZR, ZR2 -ZI, 

$W,) $ (ZR2) $ G-q 

ZR. 

1 
‘I2 i 

d?, d(VRJ 

%=Tti 

d(VlJ dv2 d(VR2) d( VI; 
---= 

d@ ’ d# d@ +i d$ 
!) - 

i 

(103) 

(104) 

(105) 

1 
0 

f(x) 1 
(107) 

After solving eq. (106) for the d V/d+ terms (which was done on the computer), the functions V were found by 

T1 = 
@ W’RI) s @ W’$) 

-drdQ+iJ TFd”, i;? = 
@ WR2) 

5 

@ WI21 
p-dr$ti ~ 

@” @cl 
.I- 

0” 
d@ 

@o 
d@ d’ ’ 

The particular solutions to the eqs. (62) and (83) were then written as 

(108) 

(109) 
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The stress resultants for the particular solution were derived in the same manner and form as in the bending theo- 
ries. 

4. Discontinuity relations between the shell segments 

The configuration analyzed is shown in fig. 6, where the positive directions for the stress resultants, slopes, and 
deflections are shown. In this analysis, continuity at the intersections of  the midsurfaces of the shell element is 
maintained. 

x X 

' 

~~N~ X 

M4, 

M~, 
% 

N4, 
N~ 

X 

w.+ 

Fig. 6. Discontinuity diagram of the shell elements. 

4 .1 .  The  a x i s y m m e t r i c  case  

The deflections at the junctions of the nozzle and sphere are equal 

w +5 = 0 .  
n s 

Summing the moments at this junction yields 

M x n  - M ¢~ s = 0 . 

A summation of  the forces in the direction of  Q~s gives 

(110) 

(111) 

Qxn  sin ~o Nxn cos ¢o + Qc~s = 0 . (112) 
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The angles of  rotation of meridional tangents are equal; thus 

d w  
~ n _ x =  . dx s 0 (113) 

At the junction between the sphere and torus, the following equations are derived: 

QCs + Q4~t = 0 ,  MCs + mq~ t = 0 , (5 s - (5 t = 0 , X s + X t = 0 . (114) 

The equations derived at the junction of the torus and cylinder are as follows: 

dW 
C 

8 t + W c - - 0 '  X t -  dx = 0 ,  M C t + M x c = 0 ,  Q4~t+Qxc O. (115) 

The above equations [eqs. (110) through (115)] were solved simultaneously and gave the unknown coefficients 
needed in the bending solutions to calculate the stresses and stress resultants. 

4.2. The nonaxisymmetric case 
For complete solutions to shell problems, we must include body movements as well as edge bending and mem- 

brane displacements [29, 30]. For this case, first consider the spherical shell having displacements due to edge 
bending and membrane solutions: Uls, Vls , Wls, and Xls as shown in fig. 7. 

In cylindrical coordinates, the displacements of  the edge of the shell are completely defined by the following: 

Uls , 81hs, (5 lvs, and Vls, where 

(5 lhs = Wls sin ~b ° + Vls cos ~b o , (51vs = - W l s  cos ~b o + Vls sin ~b o . (116,117) 

The total displacements consist of the displacements discussed above and the rigid body movements.  The rigid 
body movements of  the shell are (1) the shell moving parallel to the plane of its edges by an amount h Is and (2) 
rotating about this point through the angle Vls/b as shown in fig. 7. Therefore, the total displacements are: 

Vls 
U s = U l s - h l s '  (shs=(51hs+hls '  (svs--61vs+ V l s '  X s = X l s -  b (118) 

In the same way the displacements for the nozzle are derived as follows: 

Vls 
/-in= U l n - h l n '  6hn=(51hn+hln' (svn=(51vn+ V l n '  X n = X l n -  b (119) 

Compatibility between the nozzle and spherical shell requires that 

U n = U  s ,  6 h n = f h s ,  6vn=6vs ,  X n = X  s .  

The first two compatibility conditions are combined by eliminating the h 1 terms: 

(12o) 

61hs + U l s = 6 1 h n  + Uln • (121) 

Also, by eliminating the V 1 terms, the remaining compatibility equations yield: 
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Fig. 7. Spherical shell displacements. 

6 lvs lvn 
X l s+  b = X l n + b  - (122) 

Therefore, the rigid body movements have been elimated and the compatibil i ty conditions are satisfied by the 
two equations which involve only the bending and the membrane solutions. The above analyses are derived in refs. 
[2')] and [30]. 

In a similar manner, equations can be derived which satisfy compatibil i ty between the spherical and toroidal 
shells and between the toroidal and cylindrial shells. The 6 v 's  for the nozzle and cylinder are very small and, 
therefore, were neglected. 

The discontinuity relations between the shell segments for this loading case are: 
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+ 5 = o  C = Wn ' n -  0 S Qxn + Qc~s sin ~b N~s cos ~b = 0 , 

dw n 6vs 6v s 6v t 
dx - X s  + R s s i n ~ '  Q~  + Q~t = 0 , Xs + ~ +  Xt + R ° (1 +~ sin q~) 

M~s+M~, t = 0 ,  as - f i t  = 0 ,  a t + W c = 0 ,  

= 0 ,  

6 dW 
vt  c 

Xt + Ro (1 +c~ sin ~b ) dx - 0 ,  M~t +Mxc = 0 , Q~t+Qxc=O. (123) 

In these equations, the shear terms Qos and Q~,t are the Kirchoff shear forces for the sphere and toms. 

5. Discussion and comparison of results 

A computer program was written to simultaneously solve the equations derived in section 4 for the unknown 
constants. The unknown constants were then used to calculate stresses in the structures, and analytical predictions 
were compared with the results from two experimental shell model tests to illustrate the accuracy of the analyses. 
The complete equations used for all the shell structures are given in ref. [31 ] along with a flow diagram of the 
computer program. A sketch of  the first model is shown in fig. 8. This is a steel model and is identified as no. 32 in ref. 
[32]. In this case, the experimental data were normalized by dividing all the stresses by the circumferential mem- 
brane stress of  the cylindrical shell. The theoretical analysis was done by assuming a very small membrane nozzle 

i / I 

"50.0~ ~" / - = 0.555 in. 

Fig. 8. Sketch of the Findly, Moffat, and Stanley model no. 32. 
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attached to the torispherical shell at its apex, since the computer program was written to analyze a radial nozzle 
attached to a torispherical shell, which in turn was attached to a cylindrical shell. 

Comparisons of theoretical and experimental results are shown in figs. 9 and 10. Results for the toroidal and 
cylindrical shells only are shown since the membrane nozzle attached to the spherical portion would give a dif- 
ferent stress distribution in the sphere close to the nozzle. The meridional stresses are shown in fig. 9, and ex- 
cellent agreement is shown between the results. The circumferential stresses are shown in fig. 10 and very good 

comparison is again found. 
The second model chosen for analysis is sketched ira fig. 11. This model was also steel and tile experimental re- 

sults are given in refs. [33] and [34]. This model was analyzed ira tile same manner as the first model. 
Comparisons of experimental and theoretical results are shown in figs. 12 and 13. Again, results for only the 

toroidal and cylindrical shells are shown. The meridional stresses are shown in fig. 12 and excellent agreement is ob- 
tained between the results. The circumferential stresses are shown in fig. 13 and very good comparison is again 

shown. 
The comparison just discussed illustrate the accuracy of the analysis for the axisymmetric internal pressure 

case. No experimental data for concentrated loads was found in the literature and therefore no direct comparisons 
can be made for these loadings. However, since the analysis and equations fl>r the concentrated axial load applied 
to the nozzle are similar to those for pressure, it is not unreasonable to assume that the analysis for the concen- 

trated axial load applied to the nozzle is correct. 
To study the effect of  an external moment applied to a nozzle attached to torispherical shell, comparisons be- 

tween axial thrust and bending loads were made. The configuration which was analyzed had the following para- 

meters: 
(a) Radius of nozzle = 4.17 in. 
(b) Thickness of nozzle = 0.83 in. 
(c) Radius of sphere = 24 in. 
( d)Thickness of sphere = 0.50 in. 
(e) Radius of torus = 2.0 in. 
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Fig. 10. Findlay, Moffat, and Stanley model no. 32; pressure loading, circumferential stress. 
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(f) Thickness of torus = 0.50 in. 
(g) Radius of cylinder = 12.0 in. 
(h) Thickness of cylinder = 0.5 in. 
Comparisons between the two loads for the torispherical shell are shown in figs. 14 through 17. In these analyses, 
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90 

the membrane stresses in the cylindrical shell were held the same for both loadings in the plane of  the moment ,  
0 = 0, so that the comparison could be made between the stress states. As can be seen, the stresses in the toroidal 
part of the shell were about the same for both loadings, while great differences in the stress levels can be seen in 
the spherical part of  the shell. The reasons for the close comparison of  the stresses in the toroidal part are that the 
form of  the stress resultants in the concentrated moment  loading are different from the axial load case by a term 
multiplied by (t/ro)2/12 (1 - v 2 ) .  Since this term is very small and the stress state in the cylindrical shell at 0 = 0 
is the same for both loading cases, the stress should be approximately the same. When comparisons between the 
states of  stress in a torispherical shell caused by concentrated loads and internal pressure are made, it is found 
that under internal pressure loading the toroidal part of  the shell contains the maximum stresses while for concen- 
trated loads the maximum stress occurs in the spherical portion of  the shell. 

The buckling of  torispherical shells under internal pressure is a phenomenon that designers have been warned 
of in the past. The model which was used in ref. 2 for a buckling experiment was analyzed. A maximum stress of  
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Fig. 17. Meridional stress, outside surface. 

32 580 psi tension was calculated on the inside surface of the torus in the meridional direction. The yield stress 
for this model was placed at 35 000 psi, which could mean that tile inside surface of the model yielded. This yield- 
ing coupled with high compressive circumferential stresses on tire outside surface could cause the torus to "buckle". 
Dimples were formed in the torus with the fold lines in the meridional direction and the outside surface of the 
torus was completely dimpled all around its circumference. Therefore, the buckling of the torus could actually be 
a plastic collapse of  the structure; and to avoid "buckling" of this type structure for any loading, the stress levels 
must be kept well below the yield stress. 
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6. Conclusions 

Methods were developed to analyze torispherical shells loaded under internal pressure, an axial thrust to a ra- 
dial nozzle attached to the apex of  the shell, and a moment  applied to the radial nozzle. A particular solution to 
the bending equation was developed for both  the internal pressure and external loading cases. Solutions to the 
bending equation for the external cases were developed. Membrane solutions were developed for all these loading 

cases. 
The analysis for internal pressure was compared with experimental results and was found to be very accurate. 

Since the analyses for the other loads are very similar to that for internal pressure loading, it was reasonable to as- 
sume that they also are accurate. However, the accuracy of  these loadings could not be proved since no experimen- 

tal data for such loadings were found in the literature. 
The "buckling" of  torispherical shells under internal pressure seemed actually to be a plastic collapse of the 

structure. Therefore, no "buckling" of  the torispherical shell under external loads would be expected if the shells 
are kept  within the elastic stress limits. 

Notation 

a 

C 

C 1 , C 2 

D 
E 
F 
H~ (1), H~(2) 

k O, ko 
K 
m 
M 
M4),Mo,M ~ 

,M_Q( , M o 
N 

N¢,No,Noo 

N¢,No,  Neo 
Xx, So 
u;x  
P 

Pn, Pcp, Po 

Q~, Qo 
Qx 
ro 

Ro 
R s 

= radius of the nozzle or cylindrical shell, 
= constant used in analysis of toroidal shell segment similar to flexural rigidity, C = t / x / ~ ( 1  v2), 
= complex constants used in the calculation of  stresses and stress resultants in the toroidal shell 

segment, 
= extensional rigidity of spherical shell segment, D = Et/(1 - v2), 
= modulus of  elasticity [psi]. 
= axial force applied to a shell segment or nozzle [ l b ] ,  
= Hankel functions of  ~ order, first and second kind, 
= imaginary part of  the complex solution function for the toroidal shell, 
= change in curvature in the meridional and circumferential directions of  a toroidal shell, 
= flexural rigidity of  shells, K = Et/12 (1 - v2), 
= Fourier harmonic number,  
= external or concentrated moment  applied to the nozzle, 
--- meridional,  circumferential,  and twisting moments  in spherical and toroidal shell segments 

[ l b - i n / i n ] ,  
= axial and circumferential moments  in the nozzle and cylinder [ l b - i n / i n ] ,  
= combination complex stress resultants ofN~, + N0, 

= meridional, circumferential,  and twisting membrane stress resultants in spherical and toroidal 

shell segments [ lb / in] ,  
= meridional, circumferential,  and twisting complex stress resultants in a toroidal shell segment, 
--- axial and circumferential membrane stress resultants in the nozzle and cylinder [ lb / in] ,  
--- known membrane stress resultants in spherical and toroidal shell segments, 
-- internal pressure [psi], 
= surface loading components  normal to the surface, in the meridional direction, and in the cir- 

cumferential direction, 
= meridional and circumferential shear stress resultants in toroidal and spherical shell segments, 
= axial shear stress resultant in the nozzle and cylindrical shell, 
= radius of the circular cross section of the toroidal shell, 
= the distance of  the center of the cross section from the axis of revolution of  the toroidal shell, 
= radius of sphere, 
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R1 

R2 
Re ( Z )  

t 

W 

dw/ddp 
2d 2 

8 

6 v 
0 

P 

eo 
XA2, X o 
( ) 

( )N 
( )s' ( )s 
( )t 
( )c 

= principal radius of  curvature of  a shell in the meridional  direction, 

= second principal radius of  curvature o f  a shell in circumferential  direct ion,  

= real part of  the complex  solution funct ion for the toroidal shell, 

= shell thickness [in], 

= normal def lect ion of  the nozzle o f  cylindrical shell [in], 

= bending solution funct ion for a toroidal shell segment,  

= particular bending solution for a toroidal shell segment,  

= slope or ro ta t ion o f  the tangent to the axial direct ion of  a nozzle or cylindrical shell, 

= constants  used in analysis of  toroidal shell = x / l  2 (1 - u  2) r2/Rot ,  
= constant  used in analysis of  toroidal shell = ro/Ro, 
= horizontal  def lect ion o f  a spherical or toroidal shell, 

= vertical deflect ion of  a spherical or toroidal shell, 

= circumferential  angle of  shells, 

= Poisson's ratio, 

= meridional angle of  shells, 

= top meridional angle of  the torus, 

= slope of  shells in the meridional and circumferential  directions,  

= complex  variable, 

= nozzle stress resultants and deflect ions,  

= spherical shell stress resultants and deflect ions,  

= toroidal  shell stress resultants and deflect ions,  

= cylindrical shell stress resultants and deflect ions,  
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